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Stochastic current switching in bistable resonant tunneling systems
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Current-voltage characteristics of resonant-tunneling structures often exhibit intrinsic bistabilities.
In the bistable region of the I-V curve one of the two current states is metastable. The system
switches from the metastable state to the stable one at a random moment in time. The mean
switching time τ depends exponentially on the bias measured from the boundary of the bistable
region Vth. We find full expressions for τ (including prefactors) as functions of bias, sample geometry,
and in-plane conductivity. Our results take universal form upon appropriate renormalization of the
threshold voltage Vth. We also show that in large samples the switching initiates inside, at the edge,
or at a corner of the sample depending on the parameters of the system.

PACS numbers: 73.40.Gk, 73.21.Ac, 73.50.Td

I. INTRODUCTION

Recent advances in experimental techniques have made
possible the study of fast stochastic processes such as dy-
namic current switching in resonant tunneling structures.
The electron transport in these devices has attracted a
lot of attention since the pioneering work of Tsu and
Esaki.1 The interest was further stimulated by the dis-
covery of the phenomenon of intrinsic bistability2–6 in
double-barrier resonant tunneling structures (DBRTS).
Other resonant tunneling structures, such as superlat-
tices, are also known to show bistable behavior.7–10 Re-
cent experiments8–10 established that in the bistable re-
gion one of the current states is metastable, and the
switching to the stable state was studied. Both the mean
switching time and its distribution function were mea-
sured.10

The existence of intrinsic bistability is well understood
theoretically.11–14 It was shown14 that in a certain range

of bias, Ṽth < V < Vth, for every value of V the current
can take two different values, see Fig. 1. If one increases

the bias starting from any value below Ṽth, the current
follows the upper branch of the I-V curve shown in Fig. 1
until V reaches Vth, where the current switches to the
lower branch. On the other hand, if one decreases the
bias from the values greater than Vth, the current follows
the lower branch and then switches to the upper branch

at Ṽth.

The bistability can be understood by considering the
potential profile of the DBRTS schematically shown in
Fig. 2. If the level E0 in the quantum well is below the
bottom of the conduction band of the left lead, tunneling
into the well is not possible, and the current through the
heterostructure is zero. In this case the charge in the well
Q = 0. However, if a non-zero charge Q is added to the
well, the level E0 rises due to the charging effects and may
become higher than the bottom of the conduction band
of the left lead. Then, another steady state of current is
possible. In this state the current into the well from the
left lead is compensated by the current out of the well

through the right barrier. Thus, it is possible to have
two different current states at the same bias. (See, e.g.,
points M and S on the I-V curve, Fig. 1.)

The electric current in the device fluctuates, because
the electrons tunnel in and out of the well at random
moments in time. The resulting shot noise of current
through the heterostructure gives rise to the metastabil-
ity of some current states. The two solid lines in Fig. 1
correspond to the most probable values of current at a
given bias. These two branches are stable, i.e., any small

fluctuation of current near a solid line will decay with
time, and the current will return to its value at the solid

line. The dashed line between Ṽth and Vth corresponds to
the unstable state. Here any deviation from the dashed
line which raises or lowers the current will switch the
system to the upper or lower stable current state, re-
spectively.

Qualitative understanding of the metastability can be
achieved by considering the system at a bias near Vth,
e.g., point M on the upper branch of the I-V curve,
Fig. 1. Then, as one can see from Fig. 1, a relatively
small fluctuation can shift the current below the dashed
line corresponding to the unstable state. If that happens,
the system switches to the lower branch. The opposite
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FIG. 1: The I-V curve of the DBRTS. The bistable region is

present in the range of bias between Ṽth and Vth. The bold
dashed line corresponds to the unstable current state.
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FIG. 2: Schematic potential profile of the double-barrier reso-
nant tunneling structure. The structure consists of a quantum
well separated from two leads by tunneling barriers. The elec-
trons with three-dimensional wavevectors k and p fill all the
states up to the Fermi energies EF in the left and right leads,
respectively. In the quantum well the motion of electrons
in the z-direction is quantized, and the electrons with two-
dimensional transverse wavevectors q occupy all the states
up to the Fermi energy Ew

F . The inset shows the potential
profile at zero bias.

process is much less probable, since the distance from the
lower branch to the dashed line is much larger than that
from the upper branch. Therefore, the lower branch is
stable, and the system remains in that state.

The dependence of the mean switching time τ on the
bias was addressed theoretically in Ref. 15. It was shown
that near the threshold voltage Vth the logarithm of τ
behaves as

ln τ ∝
{

(Vth − V )3/2, L ≪ r0,
Vth − V, L ≫ r0.

(1)

Here L is the size of the sample, r0 ∝ σ1/2(Vth − V )−1/4

is a characteristic length scale, and σ is the in-plane con-
ductivity. In small samples, L ≪ r0, the current switches
from the metastable state to the stable one simultane-
ously over the entire area of the device. On the other
hand, in large samples, L ≫ r0, the switching is initiated
in a small critical region of radius r0. After the switching
has occurred in that region, it extends rapidly to the rest
of the sample.

In this paper we show that if the sample is large, the
switching can initiate not only inside, but also at the edge
of the device. The latter process tends to be more effi-
cient, since the exponential in the respective expression
for τ is smaller than in the case of switching far from the
edges of the sample (Sec. V). On the other hand, the
switching at the edge can be initiated anywhere along
the boundary of the device, and thus the prefactor of the
switching rate 1/τ due to these processes is proportional
to the perimeter ∼ L. Similarly, the prefactor of the

rate of switching inside the device is proportional to the
area ∼ L2, which makes these processes more efficient in
larger samples.

We obtain analytically the full expressions for τ , in-
cluding the preexponential factors. Apart from the
dependence on sample dimensions, the calculation of
the prefactors reveals the non-trivial dependence of the
threshold voltage Vth on the degree of disorder of the
sample. Formal evaluation of the prefactors in the case of
non-uniform electron density in the well results in ultra-
violet divergences. Similar divergences appear in quan-
tum field theory, where they are eliminated with the use
of a renormalization procedure.16,17 The application of a
similar technique to our problem leads to the renormal-
ization of the threshold voltage which depends strongly
on the conductivity of the quantum well (Secs. IVA2, V).
Upon this renormalization ln τ in large samples acquires
logarithmic corrections to its linear voltage dependence.

The paper is organized as follows. In Sec. II we ob-
tain the Fokker-Planck equation for tunneling in DBRTS
which completely describes the electron transport in
small samples. This equation enables us to find a simple
result for the mean switching time in these samples. In
Sec. III we derive the Fokker-Planck equation for the case
of large samples which describes the dynamics of electron
density in the well due to both the diffusion in the plane
of the well and tunneling between the well and the leads.
We use it to investigate the effect of weak density fluctu-
ations on the decay of metastable current state in small
samples (Sec. IV) and to study the switching in large
samples (Sec. V). The application of our theory to the
existing and future experiments is discussed in Sec. VI.

II. FOKKER-PLANCK EQUATION FOR
TUNNELING IN DBRTS

The bistable current-voltage characteristic of DBRTS
was studied theoretically in Refs. 11–14. The I-V curve
shows the dependence of the average current on volt-
age applied to the device. In addition, shot noise was
studied in the regime of small fluctuations.12–14 On the
other hand, the switching between the branches of the
I-V curve is caused by large fluctuations of current. In
this section we use the model of Ref. 14 to derive the
Fokker-Planck equation for tunneling in DBRTS, which
accounts for these large fluctuations, and thus describes
the switching.

The model is illustrated in Fig. 2. The well is extended
in x-y plane. The motion in z-direction in the well is
quantized, and the well is assumed to have only one res-
onant level of energy E0. The two-dimensional wavevec-
tors in the well are denoted by q. The left and right
leads are three-dimensional; the wavevectors of electrons
are denoted by k and p, respectively. The conduction
bands in the leads are occupied up to the Fermi energy
EF . In typical devices E0 is of the order of EF ; for def-
initeness we assume E0 > EF . The temperature T is
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assumed to be small compared to EF and eV . The well
is separated from the leads by two tunneling barriers with
the transmission coefficients much smaller than unity.

In Ref. 14 the tunneling through the double barrier was
described quantum-mechanically using the Breit-Wigner
formula. The level widths with respect to the decay to
the right and left leads ΓL, ΓR there were eventually
taken to be much smaller than all other relevant energy
scales. We make this assumption from the beginning,
and describe the electron transport through the barriers
using the sequential tunneling approach. This method is
an alternative to the use of the Breit-Wigner formula; it
enables us to discuss both the I-V characteristic and the
large fluctuations of current.

In order to have a steady state of non-zero current
in the device, the electrochemical potential in the well
should lie between those in the left and right leads, i.e.,

eV + EF > E0 + eφ + Ew
F > EF . (2)

Here Ew
F = ~

2q2
F /2m is the Fermi energy in the well with

m being the effective mass. Then, in the limit of low
temperature the inequalities (2) dictate that the tunnel-
ing is possible only in one direction, namely, from left to
right, Fig. 2. The probability to tunnel through a barrier
is given by the Fermi golden rule. The rates of electron
tunneling into the well JL and out of the well JR take
the form:

JL =
4π

~

∑

qk

|tkz
|2δqk‖

fk(1 − fq)

×δ(eV + E(kz) − E0 − eφ), (3)

JR =
4π

~

∑

qp

|tpz
|2δqp‖

fqδ(E0 + eφ − E(pz)). (4)

Here E(k) = ~
2k2/2m; fk and fq are the Fermi occu-

pation numbers in the left lead and the quantum well,
respectively. In Eq. (4) we used the fact that the Fermi
occupation numbers in the right lead fp = 0 at energies
above E0 + eφ, because E0 > EF . Expressions (3), (4)
include an additional factor of 2, which accounts for elec-
tron spins. The matrix elements tpz

(tkz
) describe the

transitions between the resonant level in the well and
the state with z-component of the wavevector pz (kz) in
the right (left) lead. The conservation of the transverse
momentum is taken into account by Kronecker deltas.

To simplify the expression for the tunneling rate (4) we
use δqp‖

to remove the sum over p‖. The remaining sum

over q of Fermi function fq gives exactly the number of
electrons in the well with a given spin N/2. Then Eq. (4)
reduces to

JR =
ΓR

~
N. (5)

Here ΓR is the level width with respect to tunneling into
the right lead. We define the level widths for the two

possible tunneling processes as

ΓL = 2π
∑

kz

|tkz
|2δ(eV + E(kz) − E0 − eφ), (6a)

ΓR = 2π
∑

pz

|tpz
|2δ(E0 + eφ − E(pz)). (6b)

To find JL we use the Kronecker delta to remove
the sum over k‖ in Eq. (3), while the value of k2

z =

(2m/~
2)(E0 + eφ − eV ) is fixed by the delta function.

At k = (q, kz) and T → 0 the sum over q of fk(1 − fq)
can be easily evaluated, and gives (S/4π)(k2

F − k2
z − q2

F )
under the condition (2), where S is the area of the sam-
ple. Then, the expression (3) can be simplified as follows

JL =
ΓL

~

[
Sm

π~2
(EF + eV − E0 − eφ) − N

]
. (7)

Here we used the expression N = Sq2
F /2π for the total

number of electrons in the well. Note that at eV > eφ +
E0 the level width (6a) vanishes, and thus JL = 0.

In the sequential tunneling approximation the average
number of electrons in the well can be determined from
the condition JL = JR,

N =
Sm

π~2

ΓL

ΓL + ΓR
(EF + eV − E0 − eφ). (8)

One cannot directly obtain N from Eq. (8), since the po-
tential φ depends on the number of electrons in the well.
Considering the barriers as two capacitors, one finds from
electrostatics the following expression for the electric po-
tential of the well (Fig. 2),

φ =
V

2
+

eN

2C
. (9)

Here we assumed for simplicity that the capacitances of
the left and right barriers are equal to each other, and
denoted the capacitance of each barrier as C.

One can obtain the current-voltage characteristic of
the DBRTS by repeating the following steps of Ref. 14.
First, one notices that the level widths are energy depen-
dent:

ΓL = gL

√
E0(E0 − eV + eφ), (10a)

ΓR = gR

√
E0(E0 + eφ), (10b)

where gL,R are dimensionless constants. Since ΓL and ΓR

depend on φ, they are also functions of N . Therefore to
find N one has to solve the pair of equations (8) and (9).
The latter leads to an equation on N , which has three
solutions in the bistable region. One of the solutions
corresponds to the average number of electrons on the
unstable branch, while the other two correspond to N
on the lower (N = 0) and upper stable branches. Upon
substitution of N into Eq. (5) one finds the dependence of
the average current on bias, i.e., the bistable I-V curve,14

which is schematically shown in Fig. 1.
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To account for the noise, we go one step further and
write the master equation for the time evolution of the
distribution function P (N, t) of the number of electrons
in the well N . In terms of the tunneling rates (3) and (4),
the master equation for P (N, t) takes the form

∂

∂t
P (N, t) = P (N − 1, t)JL(N − 1)

+P (N + 1, t)JR(N + 1)

−P (N, t)[JL(N) + JR(N)]. (11)

The first two terms in the right-hand side of Eq. (11)
account for the processes which increase the probability
to have N electrons in the well, while the last term cor-
responds to the opposite processes.

In this section we consider the samples of large in-plane
conductivity where the density in the well is uniform.
Therefore, in the steady state of non-zero current the
total number of particles in the well is proportional to the
area of the sample. The linear dimensions of the sample
are assumed to be large compared to the Bohr radius in
the semiconductor. Thus the total number of electrons
in the well is large, N ≫ 1, and one can expand Eq. (11)
in 1/N . Keeping the terms up to the second order, the
master equation reduces18 to

∂

∂t
P (N, t) = − ∂

∂N
[A(N)P (N, t)]+

1

2

∂2

∂N2
[B(N)P (N, t)].

(12)
Here A(N) = JL(N) − JR(N) and B(N) = JL(N) +
JR(N). Equation (12) is known as the Fokker-Planck
equation, and is widely used for the description of various
stochastic processes, see, e.g., Refs. 19,20.

The stationary solution of Eq. (12) can be easily ob-
tained:

P0(N) =
const

B(N)
e−U(N), U(N) = −2

∫ N

0

A(N ′)

B(N ′)
dN ′,

(13)
Ref. 19. The extrema of function U(N) are determined
by the condition A ≡ JL − JR = 0, which we used above
to find the average current through the device. There-
fore each extremum of U(N) corresponds to one of the
branches of the I-V curve. Outside the bistable region
the current I(V ) is uniquely defined, and U(N) has a
single minimum. In the bistable region U(N) has two
minima and a maximum, which correspond to the lo-
cally stable current branches and the unstable branch,
respectively [Fig. 1].

From the definitions of A and B, it is clear that their
ratio is independent of the area of the sample S. Using
the expression (13) and the fact that N ∝ S, one can see
that U is linearly proportional to S. Thus U(N) is an
extensive quantity, and its dependence on N and S has
the general form U(N, S) = Su(n), where n = N/S is the
electron density. Since the area of the sample is large, we
have U ≫ 1. Therefore, the distribution function P0 is
peaked sharply near the global minimum of U(N).

The experiments8–10 studying the switching between
the branches of the I-V curve are set up as follows. One

starts at V < Ṽth, Fig. 1, where only one value of current
is possible. In this case U(N) has only one minimum, as
shown schematically by the dash-dotted line in Fig. 3a.
If we increase the bias up to some value slightly above

Ṽth, the function U(N) will acquire a new minimum to
the left of the old one, see the dashed line in Fig. 3a.
This corresponds to the appearance of the lower current
branch of the I-V curve. The new minimum is a local
one, and the main peak of the distribution function is
still centered at the old minimum. Thus, the system
remains on the upper branch of the I-V curve. Further
increasing V , we transform U(N) to the shape shown
schematically by the solid line in Fig. 3a. Here the right
minimum of U(N) is a local one, and if we leave the
system in this state for a sufficiently long time, it will
eventually switch to the left minimum. To switch from
the local minimum to the global one, the system has to
overcome the barrier of height Ub, Fig. 3a. From the
form of the distribution function (13) it is clear that this
process takes a long time τ ∝ exp(Ub). To perform the
measurement of the switching time from the upper to the
lower current branch, one increases the bias to the chosen
value over a time short compared to τ , and then waits
until the system switches to the lower branch.

At the threshold the right minimum of U(N) disap-
pears, and Ub = 0. Since U(N) is an extensive quan-
tity, Ub grows rapidly when we move from the threshold
into the bistable region, and the switching time becomes
very long. Therefore, in order for the switching to oc-
cur within a reasonable timeframe, the system should be
close to the threshold.

As the voltage approaches its threshold value, the max-
imum at Nmax and the local minimum of U(N) at Nmin

(Fig. 3) move closer to each other, and at the threshold
they coincide. At this point one can define a threshold
electron density nth ≡ Nmax/S = Nmin/S. In the vicin-
ity of n = nth and V = Vth the function u(n) can be
approximated by a cubic polynomial,

u(n) ≈ −α(n−nth)+
γ

3
(n−nth)3+uth, α = a(Vth−V ).

(14)
Here the constant uth is the value of u at n = nth and
V = Vth.

To derive Eq. (14) microscopically, one has to consider
A(N) and B(N) on the upper branch of the I-V curve in
the vicinity of the threshold Vth. An analytical calcula-
tion of I(V ) is possible14 if the dimensionless parameter

λ =
me2

2π~2c
(15)

is small, λ ≪ 1. Here c = C/S is the capacitance per
unit area. In Appendix A we extend this approach to
find A(N), B(N), and the coefficients of expansion (14)
at λ ≪ 1.

The expansion (14) can be justified for any λ in the
spirit of the Landau theory of second-order phase tran-
sitions.21 The potential u is expected to be an analytic
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(b)

(a)

U

Ub

V = Vth − δV

V = Ṽth + δV

N

N

NminNmax

FIG. 3: (a) Generic behavior of U(N) at different values of
bias. Outside the bistable region U(N) has one minimum
(top curve). Inside the bistable region the function U(N) has
two minima and a maximum, which correspond to the locally
stable current branches and the unstable branch, respectively
(middle and bottom curves). (b) The sketch of U(N) for the
model of Fig. 1. Solid line corresponds to a bias slightly below
Vth, whereas dashed line depicts U(N) for the bias slightly

above Ṽth.

function of n and V . Thus, u can be expanded in Taylor
series near the threshold, with n−nth playing the role of
the order parameter. Since the local minimum and the
maximum of u coincide at the threshold, both the first
and second derivatives of u(n) vanish at V = Vth and
n = nth. Therefore, the expansion starts with the third-
order term. The sign of γ is not important; we choose
γ > 0, which corresponds to the behavior of U near the
right minimum as shown in Fig. 3a. At V 6= Vth, the
linear α(n − nth) and quadratic 1

2β(n − nth)2 terms are
also present. Since α = β = 0 at V = Vth, we expect
α ∝ (Vth − V ), β ∝ (Vth − V ). We keep only the linear
term in the expansion, because the second-order term is
quadratic in small parameter n − nth, and therefore is
small compared to the linear one. In order for u to have
a local minimum at V < Vth, the coefficient a should be
positive.

Near the threshold the function B(N) can be approx-

imated by a constant,

B(Nth) = 2JR = 2ΓRNth/~. (16)

In the case of constant B the Fokker-Planck equation (12)
has been studied in detail. In particular, the exact ex-
pression for the mean switching time can be obtained
including the prefactor (Ref. 19, Sec. XIII.2). In our no-
tations it reads

τ =
4π

B
√

U ′′(Nmin)|U ′′(Nmax)|
exp(Ub). (17)

For the potential (14) one can easily find the barrier
height, Ub = 4Sα3/2/3γ1/2. The prefactor of Eq. (17)
can be also straightforwardly evaluated, and one obtains
the following expression for the mean switching time,

τ =
2π

b
√

αγ
exp

[
4

3

S[a(Vth − V )]3/2

γ1/2

]
, (18)

where b = B/S is independent of the area of the sam-
ple. This result obviously agrees with Eq. (1) for small
samples (L ≪ r0).

Expansion (14) is quite generic, and similar theoretical
results were found in many different areas of physics.22–28

In particular, Eq. (12) is also used to describe the mo-
tion of a Brownian particle in external potential, where
N plays the role of the coordinate of the particle. There-
fore, the logarithm of the mean escape time of the Brow-
nian particle from a local minimum of potential is also
expected to obey the 3/2-power law. Recently this be-
havior of the escape time was confirmed experimentally
for the optically trapped Brownian particle.26

The lower branch of the I-V curve corresponds to the
situation where the level in the well E0 + eφ is below the
bottom eV of the conduction band in the left lead. In
this case JL ≡ 0 and B = −A = JR. Consequently, as
N → 0 we have U(N) = 2N , see Eq. (13). Since N can-
not be negative, U reaches its minimum at the boundary
N = 0 of the range of allowed values of N , where the
derivative U ′(N) 6= 0, Fig. 3b. The non-analyticity of
U(N) near the left minimum does not affect the calcu-
lation of the time of switching from upper to the lower
branch. Indeed, at a bias slightly below Vth, the function
U(N) is analytic near its maximum and the local min-
imum (solid line in Fig. 3b), and the description of the
switching from the upper to the lower branch in terms
of Eqs. (14) and (17) is correct. However, the situation
is different for the switching from the lower to the up-
per branch of the I-V curve. To study this process, we

decrease the bias to the value slightly above Ṽth. The
function U(N) for this case is depicted schematically by
the dashed line in Fig. 3b. Here U(N) is non-analytic
at its local minimum, and therefore we cannot use ex-
pressions (14) and (17) for the switching time. The non-
analytic behavior of U(N) is a consequence of crudeness
of our model, in which the current on the lower branch
is exactly zero. On the other hand, the experimentally
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measured I-V curves show non-zero current on the lower
branch. Thus, in a more detailed model which accounts
for this non-zero current, the minimum corresponding to
the lower branch of the I-V curve will be reached at non-
zero N . The discussion based on Eqs. (14) and (17) will
then be valid.

III. FOKKER-PLANCK EQUATION FOR
TRANSPORT IN DBRTS OF LARGE AREA

In section II we studied the decay of a metastable state
in DBRTS under the assumption that the electron den-
sity in the quantum well is uniform. Then the switching
time τ given by Eq. (18) grows exponentially with the
area of the sample. Since electrons can tunnel at any
point of the quantum well, the tunneling process creates
a non-uniform electron density. On the other hand, the
diffusion of particles in the well leads to spreading of the
charge across the sample. In small samples the spreading
is fast, and the density becomes uniform. In samples of
large area the electron density may change significantly
before the charge spreads over the entire well. In this
case the switching between the two branches of the I-V
curve is initiated in a small part of the sample, and the
switching time is not exponential in the area S.

In this section we generalize the Fokker-Planck equa-
tion (12) to the case of non-uniform density n(r), where
r = (x, y) is a position in the well. In subsequent sec-
tions this equation will be used to study the decay of a
metastable state in DBRTS of large area.

A. Equation for distribution function of electron
density in an isolated quantum well

We begin by considering the simplest case of a quan-
tum well not coupled to the leads. At finite temperature
the electron density in the well fluctuates and can be de-
scribed by a distribution function P{n(r), t}. Here we
derive the Fokker-Planck equation for the distribution
function of electron density due to the in-plane diffusion
of electrons in the well. In section III B we add the tun-
neling through the barriers and obtain the Fokker-Planck
equation for DBRTS of large area.

We consider density fluctuations at length scales much
greater than the inelastic mean free path. These density
fluctuations are slow in comparison with the energy re-
laxation time in the well. Therefore the system is in a
local equilibrium, and the distribution of electrons at any
point in the well is given by a Fermi function. Note that
the chemical potential in this Fermi function is deter-
mined by the electron density, and therefore varies from
point to point following the dependence n(r).

Let us choose a time interval ∆t much smaller than
the relaxation time for P{n(r), t} and large in compar-
ison with the collision time, so that the motion of elec-
trons can be treated as diffusive. Then one can write the

following equation for the evolution of the distribution
function,

P{n(r), t + ∆t} − P{n(r), t} =

∫ ∫
dr1dr2

×
[
P{n(r) + δn12(r), t}W∆t(r1, r2; n(r) + δn12(r))

−P{n(r), t}W∆t(r2, r1; n(r))
]
. (19)

Here δn12(r) = δ(r−r1)−δ(r−r2) is the correction to the
density n(r) due to the displacement of one electron from
point r2 to r1; the probability density W∆t(r1, r2; n(r))
describes diffusion of an electron from a point r1 in the
quantum well to point r2 during the time interval ∆t.
Since the diffusion rate may depend on the electron den-
sity, W∆t is a functional of n(r).

Expanding the first term in the right-hand side of
Eq. (19) up to the second order in δn12(r), one obtains
the following equation:

∆P{n, t} =
1

2

∫ ∫
dr1dr2

{(
δ

δn(r1)
− δ

δn(r2)

)

×[W∆t(r1, r2; n) − W∆t(r2, r1; n)]

+
1

2

(
δ

δn(r1)
− δ

δn(r2)

)2

[W∆t(r1, r2; n)

+W∆t(r2, r1; n)]

}
P{n, t}. (20)

The probability densities W∆t to diffuse from r1 to r2

and back are not independent,

W∆t(r1, r2; n)e−µ1/T = W∆t(r2, r1; n)e−µ2/T . (21)

Here µ1 and µ2 are the electrochemical potentials at
points r1 and r2, respectively. For the case of elastic scat-
tering by impurities considered in Ref. 15 expression (21)
directly follows from Eq. (8) of Ref. 15. Generalization of
Eq. (21) to arbitrary scattering mechanism is discussed
in Appendix B.

In order to find µ we need to account for the interac-
tions between electrons. We limit ourselves to the charg-
ing energy approximation; the electron exchange and cor-
relation effects are neglected. Then at low temperatures
T ≪ EF , the values of the electrochemical potential are
found by adding the electrostatic potential e2n/c to the
Fermi energy,

µ1,2 =
e2

c̃
n(r1,2). (22)

Here the effective capacitance per unit area c̃ is defined
by e2/c̃ = e2/c + 1/ν, and ν is the density of states in
the well.

In short time ∆t an electron can only diffuse over a
short distance, so that |µ1 − µ2| ≪ T . Therefore us-
ing Eq. (21), one can expand the expression in the curly
brackets in the right-hand side of Eq. (20) to the leading
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order in (µ1−µ2)/T , and with the help of Eq. (22) obtain

∆P{n, t} =
1

2

∫ ∫
dr1dr2

{
e2

c̃T

(
δ

δn(r1)
− δ

δn(r2)

)

×[n(r1) − n(r2)] +

(
δ

δn(r1)
− δ

δn(r2)

)2
}

×W∆t(r1, r2; n)P{n, t}. (23)

To proceed further we need an expression for the tran-
sition probability density W∆t. This quantity is affected
by all the relevant processes of electron scattering, such
as elastic scattering of electrons by impurities, electron-
phonon and electron-electron scattering. Instead of ac-
counting for all these processes explicitly, we express W∆t

in terms of in-plane conductivity σ, which can in princi-
ple be measured experimentally. Assuming that electron
motion is diffusive, we conclude that the average square
of the distance traveled by an electron during a short
time interval is proportional to ∆t, i.e.,

∫
W∆t(r1, r2; n)|r1 − r2|2 dr2 = G∆t. (24)

Here the constant G is proportional to the conductivity,
G = 4Tσ/e2, see Appendix C.

At small ∆t the transition probability density W∆t can
be expanded as

W∆t(r1, r2; n) = δ(r1 − r2) +
Tσ∆t

e2
∇2δ(r1 − r2) + . . . .

(25)
The physical meaning of the first term in this expansion
is that electron remains at its initial position r1 at ∆t =
0. Thus the second term is needed to account for the
electron diffusion. The coefficient in the second term is
found by applying the expansion (25) to Eq. (24).

Equation (23) can be simplified significantly using ex-
pansion (25), and eventually takes the form

∂

∂t
P{n, t} = − σ

e2

∫
dr

δ

δn

[
e2

c̃
∇2n + T∇2 δ

δn

]
P{n, t}.

(26)
This is the Fokker-Planck equation for the evolution of
the distribution function of electron density. The first
term in Eq. (26) describes the spreading of the charge
in the well, whereas the second term accounts for the
thermal noise.

It is instructive to substitute into Eq. (26) the equi-
librium distribution function P0{n}. The latter has the
Gibbs form e−E/T , namely,

P0{n} = exp

[
− 1

T

∫
e2n2(r)

2c̃
dr

]
.

Here the energy per unit area ε = e2n2/2c̃ is chosen
in a way that reproduces the electrochemical potential
µ = ∂ε/∂n in the form (22). It is easy to check that
P0{n} satisfies the Fokker-Planck equation (26).

B. Combined Fokker-Planck equation for tunneling
and diffusion

In this section we obtain the combined Fokker-Planck
equation which incorporates both the tunneling through
the barriers and diffusion inside the well. We begin by
generalizing the tunneling Fokker-Planck equation (12)
to the case of non-uniform electron density. This is ac-
complished by dividing the plane of the well into small
pieces, so that the density is uniform within each piece.
In the absence of in-plane diffusion, the distribution
function of electron density in the entire plane is given
by the product of distribution functions of its pieces,
P =

∏
j Pj{Nj}. Applying Eq. (12) to each piece we

obtain the following Fokker-Planck equation for the dis-
tribution function of the entire quantum well,

∂

∂t
P =

∑

j

∂

∂Nj

[
−A(Nj) +

1

2

∂

∂Nj
B(Nj)

]
P.

The functions A(Nj) and B(Nj) are extensive quan-
tities, and it is convenient to rewrite them as A(Nj) =
∆Sa(n) and B(Nj) = ∆Sb(n), where ∆S is the area
of each piece. Replacing the sum with the integral over
the area of the sample and ∂/∂Nj with the functional
derivative δ/δn(rj), we find the continuous form of this
equation:

∂

∂t
P{n, t} =

∫
dr

δ

δn

[
−a(n(r)) +

1

2

δ

δn
b(n(r))

]
P{n, t}.

(27)
Let us now take into account the in-plane diffusion

of electrons, which was discussed in Sec. III A. Because
the tunneling and diffusion are independent processes, we
can add the right-hand sides of Eqs. (27) and (26) and
obtain the combined Fokker-Planck equation for DBRTS
of large area:

∂

∂t
P{n, t} =

∫
dr

δ

δn

[
−a(n) +

1

2

δ

δn
b(n)

−σ

c̃
∇2n − T

σ

e2
∇2 δ

δn

]
P{n, t}. (28)

This equation generalizes Eq. (26) to the case of a quan-
tum well coupled to the leads.

In the vicinity of the threshold Vth the function b(n)
can be approximated by a constant b = b(nth). In ad-
dition, one can substitute 2a/b = 2A/B = −u′(n), c.f.
Eq. (13). At bias near Vth the function u(n) is given
by the approximate expression (14), and Eq. (28) can be
rewritten as

∂

∂t
P{n, t} =

b

2

∫
dr

δ

δn

[
− α + γ(n − nth)2

−2η∇2n +
δ

δn

]
P{n, t}, (29)

where we defined η = σ/c̃b. In Eq. (29) we omitted the
term proportional to the temperature, since it is negli-
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gible at low T . (The exact criterion is discussed in Ap-
pendix D.) Thus from now on we study only the effect of
the shot noise due to the tunneling of electrons at high
bias eV ≫ T , whereas the thermal noise is neglected.

The stationary solution of Eq. (29) is found by setting
the left-hand side to zero,

P0{n} = e−F{n},

F{n} =

∫
dr
[
−α(n − nth) +

γ

3
(n − nth)3 + η(∇n)2

]
.

(30)

The functional F{n} has two contributions: the first two
terms account for the tunneling, and the remaining term
is due to the in-plane diffusion.

The functional F{n} is similar to the free energy
in Ginzburg-Landau theory of phase transitions, with
n − nth playing the role of the order parameter. For the
case of uniform electron density in the well, ∇n = 0, the
functional F{n} coincides with Eq. (13). If the density
is non-uniform, the gradient term (∇n)2 appears in the
expansion in addition to the terms from Eq. (13). This
gradient term suppresses large variations of the electron
density.

C. Dimensionless Fokker-Planck equation

For the following discussion it is convenient to
parametrize the electron density n(r) in terms of a di-
mensionless function z(ρ) that vanishes at the minimum
of u(n),

n(r) = nmin − 2

√
α

γ
z(r/r0), (31a)

r0 =

√
η

(αγ)1/4
=

√
σ

c̃b
√

αγ
. (31b)

Here the density at the minimum nmin = nth +
√

α/γ
can be easily found from Eq. (14). The Fokker-Planck
equation (29) in terms of z(ρ) takes the form:

∂P{z, t}
∂t

= b
√

γα

∫
dρ

δ

δz

[
−∇2

ρz + z − z2 +
1

U0

δ

δz

]

×P{z, t}, (32)

where

U0 =
8ηα

γ
. (33)

The stationary solution P0 of Eq. (32) is given by

P0{z} = e−F , F = U0

∫
dρ

[
(∇ρz)2

2
+

z2

2
− z3

3

]
.

(34)
One can see that the characteristic value of the func-

tional F is given by U0, whereas the characteristic size
r0 plays the role of a typical length scale of stochastic
fluctuations of electron density n(r).

IV. DECAY OF THE METASTABLE STATE IN
EXTENDED SAMPLES

In Sec. II we obtained the expression for the mean
switching time in DBRTS under the assumption of uni-
form electron density in the well. This assumption is
valid only if the dimensions of the sample are small com-
pared to the length scale r0 of the density fluctuations,
Eq. (31b). If the sample is large, the fluctuations of elec-
tron density must be taken into account.

In Sec. III we obtained the Fokker-Plank equation (29)
which describes the time evolution of the distribution
function of electron density. Unlike Eq. (12) for the case
of uniform density, this equation has an infinite number
of variables, since the density is different at every point.

The most general form of the multidimensional Fokker-
Planck equation is

∂P (x, t)

∂t
= LP (x, t),

L = −
∑

i

∂

∂xj
Ki(x) +

∑

i,j

∂2

∂xi∂xj
Dij(x).(35)

Assuming that the system has a metastable state, one
can consider its domain of attraction Ω. The domain
boundary ∂Ω is a separatrix of the drift field K. The
mean time of the first passage out of the domain Ω has
been found in Refs. 29,30. For the process described by
Eq. (35) the mean switching time is obtained as doubled
mean first-passage time30 and takes the form,

τ = − 2
∫
Ω

ddxP0(x)
∑
i

∫
∂Ω dSi

∑
j

Dij(x)P0(x)∂f(x)
∂xj

. (36)

Here P0 is the stationary solution of Eq. (35). The form
function f(x) is a stationary solution of the adjoint equa-
tion,

L†f(x, t) =
∑

j

(
Kj(x) +

∑

i

Dij(x)
∂

∂xi

)
∂f(x)

∂xj
= 0.

(37)
In addition, f(x) is defined to vanish at the boundary
∂Ω and reach f(x) ≃ 1 well inside Ω.

In subsequent sections we use the expression (36) to
find the mean time of current switching in double-barrier
structures.

A. Mean switching time in small samples

In samples with linear dimensions small compared with
r0 the density fluctuations are weak. In this section we
study their effect on the mean switching time. We will
show that even these weak fluctuations can result in sig-
nificant change of τ .
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1. Evaluation of the mean switching time

In order to bring the Fokker-Planck equation (32) to
the form (35) we present z(ρ) as an expansion

z(ρ) =

∞∑

i=0

xiφi(ρ), (38)

where φi(ρ) are the normalized eigenfunctions of the
Laplace operator, −∇2

ρφi(ρ) = ǫiφi(ρ). In particu-

lar φ0(ρ) = r0/
√

S and ǫ0 = 0. Since there is no
current flowing through the boundaries of the sample,
the eigenfunctions must satisfy the boundary conditions
n̂ ·∇φi(ρ)

∣∣
boundary

= 0, where n̂ is a unit vector normal

to the boundary. The x0-coordinate corresponds to the
average electron density in the well, whereas the other co-
ordinates describe small fluctuations of the density. The
eigenvalues ǫi are numbered in order of increasing mag-
nitude; ǫ1 ∼ r2

0/S ≫ 1.
To obtain the x-representation of the Fokker-Planck

equation we substitute the expansion (38) into Eq. (32)
and find

L = b
√

γα

{
∞∑

i=0

∂

∂xi

[
(ǫi + 1 − 2φ0x0)xi +

1

U0

∂

∂xi

]

+
∂

∂x0
φ0x

2
0 +

∞∑

i,j,k=1

ξijk
∂

∂xi
xjxk

}
, (39)

where

ξijk =

∫
dρ φi(ρ)φj(ρ)φk(ρ).

The stationary solution P0 = e−F in terms of xi can
be found by substituting expression (38) into Eq. (34).
Then the functional F takes the form,

F{x} = U0

[
1

2

∞∑

i=0

(ǫi + 1 − 2φ0x0)x
2
i +

2φ0x
3
0

3

−1

3

∞∑

i,j,k=1

ξijkxixjxk

]
. (40)

One can easily verify that exp(−F{x}) solves the Fokker-
Planck equation with L given by Eq. (39).

The stationary probability density P0 is sharply peaked
at the minimum of the functional F , i.e., at z(ρ) = 0
(x = 0). Therefore, keeping terms up to the second order
in xi in expansion (40), we can evaluate the integral in
the numerator of Eq. (36) in Gaussian approximation:

∫ ∞

−∞

∞∏

i=0

dxi P{x} =

∞∏

i=0

√
2π

U0(ǫi + 1)
. (41)

In a multidimensional case in order to switch from the
metastable state the system has to pass from the local

minimum of F to its global minimum. The switching
process is dominated by the paths which go through the
vicinity of the lowest saddle point separating the domains
of attraction of metastable and stable states. The bound-
ary of the domain Ω lies exactly at the saddle point and
is orthogonal to the direction of the steepest descent.

The integral in the denominator of Eq. (36) is domi-
nated by the saddle point of F . The latter is found from
the condition δF/δz = 0. This equation has an obvious
solution zs(ρ) = 1. In x-representation it corresponds
to x0 = 1/φ0 and xi = 0 for i ≥ 1. Expanding expres-
sion (40) near this point up to the second order in xi we
approximate F near the saddle point by

F{x} ≃ U0

[
1

6φ2
0

− 1

2

(
x0 −

1

φ0

)2

+
1

2

∞∑

i=1

(ǫi − 1)x2
i

]
.

(42)
In small samples ǫ1 > 1, and therefore F has only one
unstable direction x0, whereas all other directions are
stable. One can see from Eq. (42) that in this approxi-
mation the boundary ∂Ω is the plane x0 = 1/φ0.

Since the boundary ∂Ω is orthogonal to the x0-
direction, the sum over i in the denominator of Eq. (36)
reduces to a single term with i = 0. Comparing Eqs. (35)
and (39) one finds that Dij = (b

√
γα/U0)δij . Noting that

Dij is diagonal, the sum over j also reduces to the only
term with j = 0.

To find ∂f/∂x0 one needs to solve Eq. (37). Noting
that ǫ0 = 0 and using Eq. (39), we can write the adjoint
equation (37) near the saddle point as

[
U0

(
x0 −

1

φ0

)
+

∂

∂x0

]
∂f

∂x0
= 0. (43)

Solving this equation, we obtain

∂f

∂x0
= −

√
2U0

π
e
−

U0

2

(
x0−

1

φ0

)
2

. (44)

Here the prefactor was found using the fact that f = 1
inside the domain Ω (i.e., at x0 → −∞) and f = 0 at the
domain boundary x0 = 1/φ0.

Using Eqs. (42) and (44) we can evaluate the integral in
the denominator of Eq. (36) in Gaussian approximation.
Then dividing the numerator (41) by this integral, we find
the following expression for the mean switching time,

τ̃ = τΥ0. (45)

Here τ is the switching time (18) obtained without the
inclusion of density fluctuations. The latter give rise to
the renormalization factor

Υ0 =
∞∏

i=1

√
ǫi − 1

ǫi + 1
. (46)

To estimate the product Υ0 we assume a rectangular
geometry of the sample with length L and width w. Then
the eigenvalues ǫi are given by

ǫi = ǫnm = π2r2
0

(
m2

L2
+

n2

w2

)
, (47)
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where n, m are non-negative integers.
In small samples ǫnm ≫ 1 and the expression for ln Υ0

can be expanded as

ln Υ0 ≃ −
∑′

n,m=0

1

ǫnm
= − 1

π2r2
0

∑′

n,m=0

1
m2

L2 + n2

w2

, (48)

where the prime in the sum means that the term with
n = m = 0 is excluded.

The infinite sum in Eq. (48) is logarithmically di-
vergent. However, since the diffusion picture is only
valid at distances greater than the mean free path l, the
wavevectors of the density fluctuations cannot38 exceed
l−1. Therefore, we need to cut the sum off at m ≤ L/l
and n ≤ w/l.

At L ∼ w ∼
√

S the sum (48) can be approximated by
a two-dimensional integral and yields,

ln Υ0 ≃ − S

2πr2
0

ln

√
S

l
. (49)

Note, that although in small samples the area S is small
compared to r2

0 , the effect of density fluctuations may

become significant at l ≪
√

S.
In the case of strip geometry, w ≪ L, we separate the

sum into two parts, with n = 0 and n > 0. The first part
gives the sum of 1/m2 which can be explicitly evaluated
and results in a small contribution L2/6r2

0 ≪ 1 to ln Υ0.
In the second part we approximate the sum over m by
the integral with an infinite upper limit. Then neglecting
terms ∼ (L/r0)

2, we obtain the sum of 1/n. Cutting off
this sum as discussed above, we find

ln Υ0 ≃ − Lw

2πr2
0

ln
w

l
. (50)

For simplicity, from now on we will consider samples
with w ∼ L ∼

√
S.

2. Renormalization of threshold voltage

Using Eqs. (45), (49) and (18) we find the following
expression for the mean switching time in small samples,

τ̃ =
2π

b
√

αγ
exp

[
4

3

S[a(Vth − V )]3/2

γ1/2

−S
√

γa(Vth − V )1/2

2πη
ln

√
S

l

]
. (51)

The second term in the exponential of Eq. (51) represents
the correction (49) due to the density fluctuations.

Let us consider the regime when the magnitude of this
term is larger than unity, but still small compared to
the first term in the exponential of Eq. (51). Then this
correction can be interpreted as a shift of the threshold
voltage in formula (18). Indeed, substituting Vth → Vth+
δVth, with the shift

δVth = − 1

4π

γ

aη
ln

√
S

l
, (52)

into Eq. (18) and expanding it up to the first order in
δVth we reproduce the result (51). In experiments the
threshold voltage Vth is not known a priori. If one treats
it as a fitting parameter, Eqs. (51) and (18) are equivalent
up to the first order in δVth.

The last term in the exponential of Eq. (51) formally
diverges at l → 0. Similar divergences have been stud-
ied in quantum field theory in the problem of the decay
of the false vacuum.16,17,31–35 According to Eq. (14), the
shift (52) of the threshold voltage is equivalent to adding
a linear in the order parameter term −aδVth(n− nth) to
the integrand of the functional (30). This corresponds to
the standard in quantum field theory method of renor-
malization of action, Refs. 16,17,31–35. Such renormal-
ization procedure removes all the divergences.

The origin of the renormalization of the threshold volt-
age can be understood as follows. The “action” F de-
scribes the so called φ3 field theory in two dimensions,
where φ ≡ (n − nth) is a scalar field. An alternative
approach to the renormalization of this scalar field the-
ory is to integrate out the fast modes φF corresponding
to large wavevectors, while keeping only slow modes φS

with small wavevectors in the action F . One can find that
the averaging of φ2

F gives the sum of inverse eigenvalues
of Laplace operator identical to (48), so that the term
γ
3φ3 after the integration over the fluctuations of the fast

modes gives rise to γ〈φ2
F 〉φS = −aδVthφS . Physically

this renormalization corresponds to the averaging of the
switching rate over fluctuations of the electron density n
in the well with characteristic scales between the mean
free path and the sample size.

Due to the renormalization of the threshold voltage the
parameter α is modified as α → α + aδVth. Therefore,
the quantities which depend on α, such that τ and r0,
are also renormalized. More precise expression for τ is
given by Eq. (18) upon substitution of the renormalized
α into it. On the other hand, the small corrections to
the prefactor of τ due to the renormalization are more
challenging to observe experimentally, and for compari-
son with experiment they can be ignored.

V. MEAN SWITCHING TIME IN LARGE
SAMPLES

So far we studied samples of small area S ≪ r2
0 . We

found that the switching occurs when the electron den-
sity at the saddle point is uniform, because the diffusion
processes are fast and they smooth out all density varia-
tions. In large samples, S ≫ r2

0 , the diffusion is slower,
and the system can reach the critical density in a small
part of the well. After the switching occurs in that part,
the switching process spreads rapidly throughout the en-
tire well. In this section we study the switching time due
to these nucleation processes.

To find the expression for the mean switching time τ
in large samples we need to obtain the minimum and the
saddle points of the functional F in Eq. (34). They can
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be found using the condition δF/δz = 0, i.e.,

−∇2z + z − z2 = 0. (53)

The boundary conditions for Eq. (53) should account for
the fact that there is no current flowing through the
boundaries of the sample. Since the current is propor-
tional to the density gradient ∇n, according to Eq. (31a)
these boundary conditions take the form

n̂ · ∇z
∣∣
boundary

= 0, (54)

where n̂ is a unit vector normal to the boundary. The
trivial solution z(ρ) = 0 gives the minimum of the func-
tional F{z}, while the saddle points can be found as non-
trivial solutions zs(ρ) of Eq. (53).

A. Nucleation processes in very large samples

Let us consider the switching in an infinite sample,
S → ∞. Due to the symmetry of the problem, the
solutions of Eq. (53) should be azimuthally symmetric.
Placing the origin of coordinate system at the center of
switching region and writing Eq. (53) in polar coordi-
nates, we find

z′′s (ρ) +
1

ρ
z′s(ρ) − zs(ρ) + z2

s(ρ) = 0. (55)

This equation should be solved with the boundary con-
dition zs(ρ) = 0 at ρ → ∞, since otherwise F{zs} ∝ S,
and the switching time τ ∝ eF{zs} will be infinite at
S → ∞. One can show that this condition is consistent
with Eq. (54), that is z′s(∞) = 0. Indeed, Eq. (53) can
be interpreted as a Schrödinger equation for a particle in
potential −zs, i.e., −(∇2 +zs)zs = −zs. Therefore, zs(ρ)
has the meaning of an eigenfunction of a bound state; its
asymptotic behavior at large distances is zs → e−ρ/

√
ρ,

so that z′s(∞) = 0. The non-trivial solution of Eq. (55)
with the boundary condition described earlier can be ob-
tained numerically. The result is shown in the inset of
Fig. 4.

The main exponential dependence of mean switching
time τi in an infinite sample is given by eF{zs}. Substi-
tuting the numerical result for zs(ρ) into Eq. (34), one
finds15

τi = τ∗
i exp

[
8ζ

ηa(Vth − V )

γ

]
, (56)

where the numerical constant

ζ =

∫
dρ

[
(∇zs)

2

2
+

z2
s

2
− z3

s

3

]
≈ 7.751. (57)

Equation (56) is the counterpart of the result (18) de-
rived for small samples, S ≪ r2

0 . Because of the depen-
dence of r0 on V , see Eqs. (31b) and (14), both types of
behavior can be observed in a single device by tuning the
bias. At the crossover, r2

0 ∼ S, the two results coincide.
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FIG. 4: The sketch of the density profile at the saddle point
zs(ρ) corresponding to the solution of Eq. (53) with the
boundary conditions (54). The precise radial dependence
zs(ρ) obtained by solving Eq. (55) numerically is shown in
the inset.

The problem of stochastic current switching is similar
to the problem of finding the probability of spontaneous
decay of a metastable vacuum near a Peierls transition
point in (1 + 1) dimensional scalar field theory. The lat-
ter problem was solved in Ref. 35, and the exponential
factor in the result for the decay time is analogous to
Eq. (56). On the other hand, the prefactor of the de-
cay time is essentially different from τ∗

i , since we study
the shot noise described by classical Fokker-Planck equa-
tion, while the false vacuum decay problem is inherently
quantum mechanical.

1. Evaluation of the prefactor

In a finite sample the switching can occur anywhere in
the well, hence the prefactor of the switching rate τ−1

i
must be proportional to the area S. Thus, while τi has
a large exponential, Eq. (56), its prefactor τ∗

i is propor-
tional to 1/S and can be small in large samples. There-
fore, to fully understand the switching one needs to find
τ∗
i .
The time evolution of distribution function P{z, t}

in large samples is given by the Fokker-Planck equa-
tion (32). To evaluate the prefactor of the mean switch-
ing time we again use the expression (36). The proce-
dure is similar to the one for small samples described in
Sec. IVA. However, the integration in Eq. (32) is now
over a large sample, and therefore the density at the sad-
dle point becomes non-uniform, Fig. 4. This significantly
complicates the evaluation of the prefactor τ∗

i .
We evaluate both integrals in Eq. (36) in gaussian ap-
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proximation. As in Sec. IVA the integral in the numera-
tor of Eq. (36) is dominated by the minimum of F{z} and
is given by the expression (41). The denominator of (36)
is dominated by the saddle point. Presenting z(ρ) near
the saddle point as z(ρ) = zs(ρ) + ṽ(ρ), we obtain the
expansion of F{z} in the form,

F{zs + ṽ} = F{zs} +
U0

2

∫
dρ ṽ(ρ)[−∇2

ρ − 2zs + 1]ṽ(ρ).

(58)
It is convenient to evaluate the integral in Eq. (58) by

expanding

ṽ(ρ) =
∑

n,m

x̃nmφ̃nm(ρ), (59)

where φ̃nm(ρ) are the normalized solutions of the eigen-
value problem

[−∇2
ρ − 2zs(ρ) + 1]φ̃nm(ρ) = λ̃nmφ̃nm(ρ). (60)

The boundary conditions for this equation are given by
Eq. (54).

Equation (60) can be interpreted as a Schrödinger
equation for a particle in the attractive potential −2zs

with energy λ̃nm − 1. Since the potential is azimuthally
symmetric, we can separate the variables as φ̃nm(ρ) =
Qnm(qρ)Ψm(ϕ). The solutions for the azimuthal part
Ψm(ϕ) are given by e±imϕ. Below it will be conve-
nient to use their real combinations, cosmϕ and sinmϕ,
and introduce the following notations: Ψ0(ϕ) = 1/

√
2π,

Ψm(ϕ) = (cosmϕ)/
√

π for m = 1, 2, . . . , and Ψm(ϕ) =
(sin mϕ)/

√
π for m = −1,−2, . . . .

Substituting the expansion (59) into Eq. (58) and using
the orthonormality condition for the eigenfunctions, we
find

F{x̃} = F{zs} +
U0

2

∞∑

n=0

∞∑

m=−∞

λ̃nmx̃2
nm. (61)

The discussion leading to Eq. (61) did not rely on the
assumption of large sample size. In the case of small
samples Eq. (61) reproduces the expansion (42), if one

identifies λ̃ = ǫ− 1. This relation is easily understood by
noticing that in small samples the density at the saddle
point is zs(ρ) = 1. Comparing the definition of ǫ given
in the paragraph after Eq. (38) with Eq. (60), where we

substitute zs = 1, we reproduce λ̃ = ǫ − 1.
The form of Eq. (61) suggests that in the case of large

samples it is more convenient to evaluate the integral in
the denominator of Eq. (36) using variables x̃nm rather

than xnm. Since the eigenfunctions φnm and φ̃nm are nor-
malized, the expansion coefficients x̃nm are related to co-
efficients xnm of expansion (38) via an orthogonal trans-
formation. The Jacobian of this transformation equals
unity, and therefore the integration over

∏
dxnm in the

denominator of Eq. (36) can be replaced by the integra-
tion over

∏
dx̃nm.

In order to evaluate the integral in the denominator
of Eq. (36) in the x̃-representation, we need to find the

eigenvalues λ̃nm of Eq. (60). All λ̃nm are positive with

the exception of one negative eigenvalue, λ̃00 < 0, and
two zero eigenvalues, λ̃0,1 = λ̃0,−1 = 0. Numerical solu-

tion of equation (60) yields λ̃00 ≈ −1.648. This negative
eigenvalue is associated with unstable deviation from zs

corresponding to the motion over the saddle point. In
Eq. (36) the boundary ∂Ω of the domain of attraction
of the metastable state is orthogonal to x̃00-direction, so
that the integration in the denominator is performed only
over the positive and zero modes. Since each positive λ̃nm

corresponds to a Gaussian integral, the integration over
them is straightforward. The integration over the zero
modes is more challenging; to perform it we first need to
understand their physical meaning.

The existence of two zero eigenvalues is due to the
translational invariance of the functional F{z} with re-
spect to any shift of the center of the switching region in
the plane of the quantum well. The two zero eigenvalues
correspond to two orthogonal to each other directions in
the plane along which such a shift can be performed. In-
deed, a small shift ∆ρ of the center of switching region
results in the following small change in the saddle point
density,

zs(ρ + ∆ρ) − zs(ρ) =
∂zs

∂ρx
∆ρx +

∂zs

∂ρy
∆ρy. (62)

One can check by differentiating Eq. (53) with respect
to ρx,y that the derivatives ∂zs/∂ρx,y are solutions of

Eq. (60) with λ̃ = 0. Furthermore, ∂zs/∂ρx = z′s(ρ) cos ϕ
and ∂zs/∂ρy = z′s(ρ) sin ϕ, so the azimuthal quantum
numbers corresponding to zero modes are m = ±1 in
our notations. Thus we conclude that ∂zs/∂ρx,y =

c0φ̃0,±1(ρ), where c0 is a constant.39

Substituting these expressions for ∂zs/∂ρx,y into
Eq. (62) and comparing it with the expansion (59), we
find that the coefficients corresponding to zero modes are
x̃0,±1 = c0∆ρx,y. Thus the integral over the zero modes
x̃0,1 and x̃0,−1 amounts to the integration over the possi-
ble positions of the center of the switching region in the
sample,

∫
dx̃0,1

∫
dx̃0,−1 = c2

0

∫
d(∆ρx)

∫
d(∆ρy) = ζ

S

r2
0

. (63)

Here the constant c0 was found using azimuthal symme-
try of zs and the fact that the eigenfunctions φ̃nm(ρ) are
normalized,

c2
0 =

∫ (
∂zs

∂ρx

)2

dρ =
1

2

∫
[∇zs(ρ)]2 dρ = ζ. (64)

The relation between the last integral and the constant
ζ defined by Eq. (57) is proven in Appendix E.

To find the denominator of Eq. (36) in the x̃-
representation we also need Dij and ∂f/∂x̃00. They
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can be obtained from the x̃-representation of the Fokker-
Planck equation for large samples. Substituting z(ρ) =
zs(ρ) + ṽ(ρ) with ṽ in the form (59) into Eq. (32) and
using the orthonormality condition for the eigenfunctions
φ̃nm(ρ), we obtain the Fokker-Planck equation Ṗ = LP
with

L = b
√

γα
∑

n,m

[
∂

∂x̃nm
λ̃nmx̃nm +

1

U0

∂2

∂x̃2
nm

]
. (65)

Here we neglected the terms of higher orders in x̃nm.
One can easily check that the solution of the stationary
Fokker-Planck equation LP0 = 0 is P0 = e−F with F
given by the Gaussian approximation (61).

Comparing Eqs. (35) and (65) we conclude that Dij =
(b
√

γα/U0)δij . To find ∂f/∂x̃00 we need to solve Eq. (37)
with L given by (65), that is

[
−λ̃00x̃00 +

1

U0

∂

∂x̃00

]
∂f

∂x̃00
= 0. (66)

Solving it with the conditions f = 1 inside the domain Ω
(i.e., at x0 → −∞) and f = 0 at the domain boundary
x00 = 0, we find that at the saddle point ∂f/∂x̃00 =

−(2|λ̃00|U0/π)1/2.
Substituting Eq. (41) for the numerator of Eq. (36),

and Eqs. (61) and (63) along with the expressions for
Dij and ∂f/∂x̃00 into the denominator of Eq. (36) we
reproduce the result (56) with the prefactor given by

τ∗
i ≃ π2

4

√
|λ̃00|ζbSα2

Υ′′′, Υ′′′ =
∏

n,m

′′′

√
λ̃nm

λnm
. (67)

Here the product Υ′′′ excludes the factors corresponding
to the three non-positive eigenvalues λ̃nm. The coeffi-
cients λnm denote the parameters 1+ǫi used in Sec. IVA.
They coincide with the eigenvalues of the Schrödinger
equation (60) in the absence of the attractive potential
−2zs(ρ).

To evaluate the infinite product Υ′′′ we need to find the
continuous spectrum of Eq. (60). The radial part of φ̃nm

oscillates as a function of ρ with the wavevector qn. The
phase of these oscillations at ρ → ∞ is shifted by δm(qn)
due to the scattering in the attractive potential −2zs.
The eigenvalues of the continuous spectrum are expressed
in terms of these scattering phase shifts as follows

λ̃nm = 1 + q2
n ≃ 1 +

(πn

R

)2
[
1 − δm(πn/R)

πn

]2
. (68)

This result is derived for a round sample of dimensionless
radius R ≫ 1; the derivation and the expression for the
phase shifts δm are given in Appendix F. The expression
for the eigenvalues λnm is given by Eq. (68) with δm = 0.

It is convenient to calculate the logarithm of Υ′′′,
thereby transforming the product over n and m to a sum.
Taking the large sample limit, R → ∞, we replace the

sum over n by an integral over q = πn/R. Then expand-
ing the integrand in small parameter δm/n, we find

ln Υ′′′ ≃ − 1

π

∫ ∞

0

[
∞∑

m=−∞

δm(q)

]
q dq

1 + q2
. (69)

To investigate the convergence of the integral we need
to evaluate the sum of the phase shifts at large q. This is
accomplished with the help of the following “Friedel sum
rule”

∞∑

m=−∞

δm(q)

∣∣∣∣∣
q→∞

= 2ζ (70)

proven in Appendix F. The asymptotic behavior (70) of
the phase shifts implies that the integral in Eq. (69) di-
verges logarithmically at q → ∞. This ultraviolet diver-
gence signals that Υ′′′ is determined by a large wavevec-
tor cutoff or, equivalently, by some short distance scale.
An analogous divergence appeared in the prefactor of the
mean switching time in small samples, Sec. IVA. There
we have shown that this short distance cutoff is of the
order of the mean free path l. Following the same recipe,
we cut off the integral in Eq. (69) at q ∼ r0/l, and with
logarithmic accuracy find

ln Υ′′′ ≃ −2ζ

π
ln
(r0

l

)
. (71)

Substituting this result into Eq. (67), we obtain the pre-
factor

τ∗
i ∼ 1

bSα2

(
l

r0

)2ζ/π

. (72)

This expression completely describes the parametric de-
pendence of the prefactor of the mean switching time in
large samples. On the other hand, because of the ul-
traviolet divergence of Υ′′′, the numerical coefficient in
τ∗
i cannot be determined without detailed treatment of

charge transport at short length scales.40

2. Renormalization of threshold voltage in large samples

Expression (72) for the prefactor τ∗
i implies that in

large samples the switching rate τ−1
i diverges at l → 0.

In Sec. IVA2 we encountered the same problem while
considering small samples. There it was shown that the
dependence of τ on the mean free path can be absorbed
into the definition of the threshold voltage Vth. Following
the same renormalization technique, one can shift the
threshold voltage Vth by the amount

δVth = − 1

4π

γ

aη
ln

r0

l
, (73)

chosen in such a way that the resulting correction to the
exponential in Eq. (56) cancels Υ′′′ in the prefactor τ∗

i ,
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see Eqs. (67), (71). The renormalized result for the mean
switching time then takes the form

τi ∼
1

bSα2
R

exp

[
8ζηαR

γ

]
, αR = α + aδVth. (74)

This expression is equivalent to Eqs. (56), (72) up to
the correction in the prefactor τi due to the substitution
α → αR.

The characteristic length scale r0 is sensitive to the
position of the threshold voltage, so its value has to be
renormalized. Since the size of the critical nucleus and
δVth are coupled to each other, Eq. (73), they should be
evaluated self-consistently:

rR =

√
η

[(α + aδVth)γ]1/4
, (75a)

δVth = − 1

4π

γ

aη
ln

rR

l
. (75b)

To find δVth one can solve the system of equations (75)
iteratively starting with rR = r0. The result (73) then
should be understood as the first iteration of Eq. (75b).

Upon the substitution of the shift (75b) into Eq. (74),
the logarithm of the switching time τi acquires an ad-
ditional logarithmic dependence on voltage due to the
bias-dependent renormalization of Vth. This dependence
is physically meaningful and can, in principle, be tested
experimentally. However, these corrections to the volt-
age dependence (56) of τi are small, and to the leading
order ln τi is still linear in voltage.

B. Nucleation near sample boundaries

In Sec. VA we studied the nucleation processes in
very large samples assuming that the switching initiates
far from the boundaries (i.e., at distances significantly
greater than r0). In this section we show that the switch-
ing can be more effective when it is initiated near the
boundaries of the sample and evaluate the mean switch-
ing time for such processes.

1. Nucleation at a smooth edge

To study the nucleation near an edge which is smooth
on the scale r0, we model the sample by a half-plane and
set up the coordinate system so that ρx is the coordinate
along the boundary and ρy is positive inside the half-
plane. Then the boundary condition (54) takes the form
z′ρy

(ρx, +0) = 0. If we place the center of the saddle-point
solution zs shown in Fig. 4 on the edge of the sample, the
resulting function

ze(ρx, ρy) = zs([(ρx − ρ(0)
x )2 + ρ2

y]1/2) (76)

automatically satisfies not only equation (53) but also
the boundary condition. Therefore, the expression (76)
gives the saddle point density for the half-plane.

One can argue that there are no other saddle point so-
lutions for edge switching. Indeed, suppose that we have
a solution z̃(ρx, ρy) of Eq. (53) for a half-plane. Then
we can define function z(ρx, ρy) in the entire plane, so
that z = z̃(ρx, ρy) for ρy > 0, and z = z̃(ρx,−ρy) for
ρy < 0. By construction z(ρx, ρy) satisfies Eq. (53) at
ρy 6= 0. However, this procedure does not guarantee that
the derivative z′ρy

is continuous at ρy = 0; as a result

∂2z/∂ρ2
y may have a delta-function contribution. More

specifically, z(ρx, ρy) satisfies the equation

−∇2z + z − z2 = −2z̃′ρy
(ρx, +0)δ(ρy). (77)

If in addition z̃(ρx, ρy) satisfies the boundary condi-
tion (54), i.e., z̃′ρy

(ρx, +0) = 0, equation (77) coincides

with Eq. (53) everywhere in the plane. Then by construc-
tion z(ρx, ρy) = zs(ρ), and therefore z̃(ρx, ρy) is given by
a half of the saddle-point solution zs shown in Fig. 4
with its center on the boundary of the half-plane. Thus,
there are no saddle point solutions for edge switching ex-
cept (76).

The main exponential dependence of the mean switch-
ing time τ is given by eF{zs}. In the definition (34) of
F{z} the integral is taken over the area of the sample.
In the case of switching far from the boundaries it is over
an entire plane, while for the edge switching this integral
is over a half-plane. Therefore F is reduced by a factor of
2 compared to the case of switching far from the bound-
aries. Thus, instead of Eq. (56), the expression for τ at
the edge takes the form

τe = τ∗
e exp

[
4ζ

ηa(Vth − V )

γ

]
. (78)

The evaluation of the prefactor τ∗
e is similar to the

one for the switching in the middle of a large sample,
Sec. VA1. In that case we found two types of modes
for the azimuthal part of the eigenfunctions φ̃nm(ρ) of
Eq. (60), namely, sinmϕ and cosmϕ. At the edge only
the eigenfunctions proportional to cosmϕ are consistent
with the boundary condition z′ρy

(ρx, +0) = 0 on the di-
mensionless density z. In the notations of Sec. V A1
these modes correspond to m = 0, 1, 2, . . . .

The functional F{z} is invariant with respect to the
shifts of density z(ρx, ρy) along the edge of the sample.
Thus F{z} has a single zero mode x̃01; it corresponds to
the eigenfunction with the azimuthal part cosϕ. Inte-
gration over the zero mode, in analogy with Eq. (63), is
performed as

∫
dx̃01 =

√
ζ

2

P
r0

, (79)

where P is the perimeter of the sample.
To evaluate the prefactor we again use formula (36).

Expression (41) for the numerator and the formulas for
Dij and ∂f/∂x̃00 in large samples are still applicable,
as they were obtained in a way independent of the exact
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form of the saddle-point density. Following the procedure
of Sec. VA1, we find the prefactor τ∗

e in the form

τ∗
e =

π3/2Υ′′

√
2ζ|λ̃00|bγ1/4α5/4P

, Υ′′ =
∏′′

n,m≥0

√
λ̃nm

λnm
, (80)

c.f. Eq. (67). The definition of Υ′′ assumes that the

factors corresponding to the two lowest eigenvalues, λ̃00

and λ̃01, are excluded.
In the product Υ′′ the quantum number m changes

from 0 to ∞, while in Υ′′′ the same product is from −∞
to ∞. Thus using the fact that λ̃nm and λnm are even
functions of m, we obtain

ln Υ′′ ≃ 1

2
ln Υ′′′ ≃ − ζ

π
ln
(r0

l

)
, (81)

see Eq. (71).
Similarly to Eq. (72) we find the prefactor of τ for the

edge switching

τ∗
e ∼ 1

bPγ1/4α5/4

(
l

r0

)ζ/π

. (82)

Note that due to the ultraviolet divergence of Υ′′ we can
evaluate τ∗

e only up to an undetermined constant.
Performing the same renormalization (73) of the

threshold voltage as in Sec. VA 2, one can eliminate the
explicit dependence lζ/π of the prefactor on the mean free
path and obtain the following expression for the mean
switching time at the edge

τe ∼ 1

bPγ1/4α
5/4
R

exp

[
4ζηαR

γ

]
. (83)

The exponent in Eq. (83) is factor of 2 smaller than the
exponent of τ for the switching far from the boundaries,
Eq. (74). Far from the threshold the exponential factor is
dominant, and therefore edge switching is more efficient.
To determine which switching mechanism is more effi-
cient near the threshold, one needs to take into account
the dependences of the prefactors in Eqs. (74) and (83)
on the dimensions of the device.

2. Nucleation in a corner

In Sec. VB 1 we considered the processes of switching
initiated near a smooth edge of the sample. In samples
with pronounced corners, such as the devices of square or
triangular shape, there is also a possibility of nucleation
in a corner. As we will show, such processes may be
more efficient than the nucleation in the interior and at
the edges of the sample.

We consider a corner of angle θ < π. Similarly to the
discussion in the beginning of Sec. VB 1, one can show
that the saddle-point solution zs(ρ) centered at the cor-
ner both solves the equation (53) and satisfies the bound-
ary condition (54).

The subsequent consideration is similar to the one
for the switching at a smooth edge of a large sample,
Sec. VB 1. At θ < π the functional F{z} does not pos-
sess translational symmetry with respect to the shifts of
z(ρ), and therefore there are no zero modes. Due to
the boundary condition (54) the allowed modes of the

azimuthal part of the eigenfunction φ̃nm(ρ) of Eq. (60)
are cos(πmϕ/θ). Then instead of Eqs. (78) and (80), we
obtain

τc =
2πΥ′

√
|λ̃00|b

√
γα

exp

[
4θζηα

πγ

]
, Υ′ =

∏′

n,m≥0

√
λ̃nm

λnm
.

(84)

Here λ̃nm are the eigenvalues of Eq. (60) with
the boundary conditions (54), which take the form

(∂φ̃nm/∂ϕ)|ϕ=0,θ = 0 for the corner switching. Unlike
in Secs. VA1 and VB 1, here at n ≫ 1 the eigenval-
ues λ̃nm are given by Eqs. (68), (F4) with m replaced by
πm/θ. The product Υ′ excludes the factor corresponding

to the negative eigenvalue λ̃00.
Following closely the calculations of Secs. V A1

and VB 1, one can find the prefactor of τc, and the ex-
pression for the mean switching time takes the form

τc ∼ 1

b
√

γα

(
l

r0

)θζ/π2

exp

[
4θζηα

πγ

]
. (85)

One might expect that at θ → π this result should
coincide with Eqs. (78), (82) describing the edge switch-
ing. On the other hand, the prefactors for the edge and
corner switching are qualitatively different, since the lat-
ter does not depend on the perimeter P . This is due to
the fact that at θ < π there is no zero mode, i.e., all
λ̃nm except λ̃00 are positive. At θ → π the eigenvalue
λ̃01 → 0, which corresponds to the appearance of a zero
mode. In this case one needs to apply the same proce-
dure as in Sec. VB 1, which will lead to the result (82)
for the prefactor.

Performing the same renormalization (73) of Vth as in
Secs. VA2 and VB1, we find the expression for the mean
switching time at a corner of angle θ

τc ∼ 1

b
√

γαR
exp

[
4θζηαR

πγ

]
. (86)

Note that at θ < π the exponent of τ for the corner
switching is smaller than that for both interior and edge
switching. This makes corner switching more efficient far
from the threshold.

VI. DISCUSSION

In preceding sections we studied the mean time τ of
switching from the metastable to the stable current state
in double-barrier resonant-tunneling structures. We cal-
culated both the exponentials and prefactors of τ for
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switching in the small sample regime [Eq. (18)] and for
the interior, edge, and corner switching in the large sam-
ple regime [Eqs. (74), (83), and (86), respectively]. In this
section we discuss the dependence of the mean switch-
ing time on voltage for different structural parameters of
DBRTS.

We concentrate on the case of round samples, such as
the ones used in the recent experiments.9,10 As we have
shown, when the voltage V is tuned close to the thresh-
old, the size of critical nucleus r0 is large compared to
the radius of the sample L, and the device is in the small
sample regime. If the voltage is far from Vth, the device
is in the large sample regime, L ≫ r0. In a typical exper-
iment τ is measured in a single device for different values
of bias. We will therefore assume that all structural pa-
rameters and the size of the sample are fixed, and discuss
the switching time as a function of voltage. For compar-
ison with experiment we will not distinguish between rR

and r0 in this section, since the logarithmic in voltage
corrections due to the renormalization of the threshold
voltage Vth are more challenging to observe.

Our approach is valid as long as the exponents in the
expressions for the switching time, Eqs. (18), (56), and
(78) are much greater than unity. To check when these
conditions are satisfied, it is convenient to write the ex-
ponent in Eq. (56) as

8ζηα

γ
=

(
d

r0

)4

. (87)

Here we introduced a new characteristic length scale

d ≡
(

8ζη3

γ2

)1/4

(88)

and applied the definition of r0 given by Eq. (31b). Note
that the length scale d depends on structural parameters
of the device, but not on the sample size or bias.

Similarly, the exponent of the switching time (18) in a
small sample can be expressed in terms of d and r0 as

4Sα3/2

3γ1/2
=

π

6ζ

L2

r2
0

(
d

r0

)4

, (89)

where we used the fact that in round samples S = πL2.
This exponent is much greater than unity at r0 ≪
(Ld2)1/3. On the other hand, the regime of small sample
is defined by the condition r0 ≫ L. Therefore, it exists
only in sufficiently small samples, L ≪ d. In this case
close to the threshold there is a region of 3/2-power law
behavior (18). As voltage tuned further away from Vth

(i.e., at r0 ≪ L), it crosses over to the region of linear
voltage dependence of ln τ for the regime of large sample,
see solid line in Fig. 5a.

In large round samples the mean switching time τ is
given by τ−1 = τ−1

i +τ−1
e . Therefore, to find the slope of

linear segment of the curve in Fig. 5a, one has to compare
the rates of switching in the interior and at the edge.

(a)

(b)
V

V

ln τ

ln τ

L ≪ d

L ≫ d

Vth

V ∗ Vth

(Vth − V )

(Vth − V )3/2

FIG. 5: Schematic dependence of the logarithm of the mean
switching time τ on voltage. (a) In round samples at L ≪ d,
close to the threshold there is a region of 3/2-power law de-
pendence of ln τ , followed by the region of linear dependence
corresponding to the switching at the edge in the regime of
large sample. In samples with pronounced corners the re-
gion of linear dependence corresponds to the switching at the
sharpest corner (dashed line). (b) At L ≫ d, two regions of
different linear behavior corresponding to the switching in the
interior and at the edge of large round sample are present. In
samples with pronounced corners these two regions are fol-
lowed by an additional region of linear voltage dependence
corresponding to the switching at the corner of smallest angle
θ shown by dashed line. The slope of this linear dependence
is smaller by a factor of π/θ than that of edge switching.

Using Eqs. (74) and (83), the ratio of the rates can be
expressed as

τ−1
e

τ−1
i

∼ d

L
exp

[
1

2

(
d

r0

)4

− 3 ln
d

r0

]
. (90)

At L ≪ d this result shows that the switching always oc-
curs at the edge rather than in the interior of the sample.

To summarize, we found that in samples of radius L ≪
d starting at voltage difference (Vth − V ) corresponding
to r0 ∼ (Ld2)1/3, one first observes the region of 3/2-
power law dependence (18) of ln τ . Then, as (Vth − V )
increases, follows the region of linear dependence (83)
corresponding to the switching at the edge in the regime
of large sample, see solid line in Fig. 5a.

At L ≫ d the system is never in the small sample
regime. In this case the dependence of ln τ on voltage is
linear, but it may be due to either interior or edge switch-
ing. According to Eq. (90), at r0

<∼ d and very large L
interior switching dominates. At very small r0 the expo-
nential in Eq. (90) becomes very large, and therefore the
switching takes place at the edge. The crossover voltage
V ∗ between these two regions of linear dependence can
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be determined from the condition τ−1
e = τ−1

i applied to
Eq. (90),

V ∗ ≈ Vth − 2η2

γad4
ln

L

d
. (91)

Thus, in these large samples the interior switching (74)
dominates between V ∗ and Vth, whereas at voltage below
V ∗ the edge switching (83) prevails. The dependence
of ln τ on voltage for L ≫ d is shown schematically in
Fig. 5b by solid line.

If the sample size is of order d, the dependence of ln τ
on voltage can be obtained from the dependences shown
in Fig. 5a and Fig. 5b. At L ∼ d the region of 3/2-power
law depedence in Fig. 5a and the interior switching region
in Fig. 5b disappear. Thus, at L ∼ d one can only observe
the region of linear voltage dependence corresponding to
the edge switching.

In samples with pronounced corners the dependence
of ln τ on voltage is different due to the possibility of
corner switching. The mean switching time τ in these
samples is given by τ−1 = τ−1

i +τ−1
e +τ−1

c . At L ≪ d an
analysis similar to that for round samples shows that the
region of linear dependence corresponds to the switching
at the sharpest corner, Eq. (86). This dependence is
illustrated by dashed line in Fig. 5a. At L ≫ d, the two
regions of interior and edge switching are followed by an
additional region corresponding to the switching at the
sharpest corner as (Vth − V ) becomes large, see dashed
line in Fig. 5b.

Depending on the ratio of L and d two qualitatively
different voltage dependences of ln τ are expected. To see
whether it is possible to observe them experimentally, we
make a crude estimate of the parameter d. Substituting
η = σ/c̃b into Eq. (88) and using the estimates of γ and
B found in Appendix A, we get

d ∼ 1√
n

(
~σ

e2TR

)3/4(
TL

TR

)1/2

. (92)

To obtain this expression the capacitance of the device
per unit area was estimated as c ∼ e2n/EF , and the en-
ergy of the level in the well E0 was assumed to be of
the order of EF . The electron density n in the well is
typically of the order of 2 · 1011 cm−2. The transmission
coefficients TL,R of the left and right barriers can be var-
ied in the range from 1 to 10−4, whereas the conductivity
measured in units of e2/~ varies from 1 to 100. Assum-
ing TL ∼ TR, the low bound d ∼ 20 nm is achieved at
σ ∼ e2/~ and TL,R ∼ 1. The upper bound d ∼ 600 µm
is achieved by substituting the maximum value of the
conductivity and the minimum value of the transmission
coefficient. These estimates show that both the cases of
L ≪ d and L ≫ d are experimentally achievable in mod-
ern DBRTS, as the sample sizes range from 1 to 103µm.

The available experimental data10 confirm that the de-
pendence of the mean switching time on voltage is indeed
exponential. Based on Eq. (92) we estimate d ∼ 10 µm,
which is somewhat smaller than the radius of the sample

L = 60 µm. Thus, one should expect the logarithm of the
mean switching time to behave as shown in Fig. 5b. (The
switching time τ is referred to as the relocation time in
Ref. 10.) On the other hand, it was observed in Ref. 10
that ln τ bends upwards, which suggests that L ≪ d, see
Fig. 5a. One of the possible explanations can be that this
experiment was performed in superlattices, rather than
in DBRTS studied in this paper, which makes our esti-
mate of d unreliable. To test our theory in more detail, it
would be interesting to carry out similar measurements
of τ in several samples of different size but with the same
structural parameters. This will ensure that both depen-
dences depicted schematically in Fig. 5a (L ≪ d) and
Fig. 5b (L ≫ d) will be observed. In addition, the ex-
ponential dependence in Ref. 10 is not very pronounced,
since τ varies by only one order of magnitude. This sug-
gests that τ was measured rather close to the threshold,
and therefore the data captures only the initial part of
either linear dependence for interior switching [Fig. 5b]
or 3/2-power law dependence, Fig. 5a. To observe the
entire bias dependence shown in Fig. 5a or Fig. 5b, a
measurement of τ in a wider range of voltage is needed.
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S. W. Teitsworth, and M. B. Voloshin for valuable discus-
sions. The authors acknowledge the hospitality of Bell
Labs where part of this work was carried out. O.A.T.
would like to thank Argonne National Laboratory for
their hospitality. This work was supported by the U.S.
DOE, Office of Science, under Contract No. W-31-109-
ENG-38, by the Packard Foundation, and by NSF Grant
DMR-0214149.

APPENDIX A: CALCULATION OF
COEFFICIENTS A AND B IN EQ. (12)

In this appendix we find the functions A(N) and B(N)
in Eq. (12) in the vicinity of the threshold. We will as-
sume that the parameter (15) is small, λ ≪ 1. It will be
convenient here to consider A and B as functions of the
electron density n rather than N = nS.

Let us write the expression for A = JL − JR near the
threshold. On the upper branch of the I-V curve, the
level in the well lies within the conduction band in the left
lead; from Eq. (9) we obtain eV/2+ e2N/2C +E0 > eV .
On the lower branch, the level is below the bottom of
the conduction band in the left lead eV/2 + E0 < eV ,
so that no current can flow through the well and N = 0.
Therefore, in the bistable region

eV − e2N

2C
<

eV

2
+ E0 < eV. (A1)

At λ ≪ 1, it follows from Eq. (8) that e2N/2C is small
in comparison with EF and E0. One can then see from
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Eq. (A1) that E0 ≃ eV/2, and Eq. (9) results in eφ ≃
eV/2. Then from Eq. (10b) we find ΓR =

√
2gRE0. The

expression (7) for the rate JL can also be simplified. For
λ ≪ 1 and gL ∼ gR, to first order in λ the expression
in the square brackets of Eq. (7) is (Sm/π~

2)EF . Using
Eqs. (5), (7) and (10a) with all the above simplifications,
close to the threshold A = JL −JR can be approximated
as

A(n, V ) =
gL

~

√

E0

(
E0 −

eV

2
+

e2n

2c

)
Sm

π~2
EF

−
√

2gRE0

~
nS. (A2)

The density n on the metastable and unstable branches
of the I-V curve is found by solving the equation
A(n, V ) = 0, which reduces to the quadratic equation

[
e2n

2c

]2
−
(

λ
gL

gR

)2
E2

F

2E0

[
e2n

2c

]

+

(
λ

gL

gR

)2
E2

F

2E0

(
eV

2
− E0

)
= 0. (A3)

At the threshold the two solutions for n coincide. This
condition enables us to find the threshold voltage and
density

Vth =
2E0

e

[
1 +

λ2

8

g2
L

g2
R

E2
F

E2
0

]
, (A4)

nth =
λ2

2

(
gL

gR

)2
c

e2

E2
F

E0
. (A5)

Using Eqs. (16), (A5) and the fact that near the thresh-

old ΓR =
√

2gRE0, we find the value of B(n) at the
threshold:

B(nth) =
√

2λ2 1

~

g2
L

gR

C

e2
E2

F . (A6)

Using Eqs. (A4), (A5) we expand A(n, V ) given by
Eq. (A2) in Taylor series near (nth, Vth) up to the first
non-vanishing terms in n−nth and V −Vth, respectively.
At the threshold A(n) = 0 has only one solution, i.e.,
the first derivative with respect to n equals to zero, and
therefore we need to expand up to the second order in n.
The result can be presented as

A(n) = −B(nth)

2

[
−α + γ(n − nth)2

]
, (A7a)

α =
2

λ2

(
gR

gL

)2
E0

E2
F

e(Vth − V ), (A7b)

γ =
2

λ4

(
gR

gL

)4(
e2

c

)2
E2

0

E4
F

. (A7c)

Since dU/dN = −2A/B, the coefficients α and γ coincide
with those used in Eq. (14).

Assuming rectangular potential profile in the well, pa-
rameters gL,R can be estimated in terms of the transmis-
sion coefficients of the barriers as gL,R = TL,R/π.

APPENDIX B: DERIVATION OF EQ. (21) FROM
THE DETAILED BALANCE PRINCIPLE

Let us consider two very close to each other points r1

and r2 in the well. The system is in a local equilibrium,
and the electron distributions are given by Fermi func-
tions. We assume electrons to be sufficiently well coupled
to the lattice, so that the temperature T is the same ev-
erywhere in the quantum well. Then the probabilities of
diffusion between these two points are given by

W∆t(r1, r2; n) =
∑

ij

Wijfi(1 − fj) =
∑

ij

Wijfifje
ǫj−µ2

T ,

W∆t(r2, r1; n) =
∑

ij

Wjifj(1 − fi) =
∑

ij

Wjififje
ǫi−µ1

T .

(B1)
Here i and j label the energy levels at positions r1 and
r2, respectively; fi(j) are the Fermi functions, and Wij

is the probability of transition from occupied level i to
unoccupied level j.

In equilibrium the transition rates satisfy the detailed
balance condition:

Wije
−ǫi/T = Wjie

−ǫj/T . (B2)

Our system is away from equilibrium, since the electro-
chemical potential µ(r) varies with the electron density
n(r). However, expression (B2) is still applicable for
the relevant electron scattering processes. For example,
in the case of elastic scattering by impurities ǫi = ǫj ,
and Wij = Wji due to time reversal symmetry, so that
Eq. (B2) holds. Furthermore, one can easily check that
for electron-phonon scattering expression (B2) is also
valid, because the phonons are not sensitive to the change
in electrochemical potential.

Strictly speaking in the presence of electron-electron
scattering expression (B2) is incorrect. If electron during
the transition from state i to j scatters off an electron
at position r′1, the latter moves to position r′2. Then one
finds an additional factor of exp[(µ′

1−µ′
2)/T ] in the right-

hand side of Eq. (B2). However, because the electron-
electron interaction is screened, the distance r′2 − r′1 is
of the order of the screening length in the well. The
change of µ at such short distances is small compared to
the temperature, and thus Eq. (B2) is still approximately
correct.

Applying expression (B2) to Eqs. (B1) we obtain
Eq. (21). Since during a short time interval ∆t an elec-
tron can only diffuse over a short distance, the above
proof is sufficient for the purposes of Sec. III A.

As an additional remark, let us show that the expres-
sion (21) also holds at larger distances. We consider the
probability density Wt(ri, rf ; n) of diffusion from point
ri to a relatively distant point rf . Let us divide the time
interval t into N small intervals ∆t = t/N . Then Wt can
be represented in terms of W∆t in the following way:

Wt(ri, rf ; n) =

N∏

k=1

∫
W∆t(rk, rk+1; n) drk+1,
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where r1 = ri and rN+1 = rf . The distances between the
points rk and rk+1 are small, so that the expression (21)
is applicable. Since at small distances ∆µ ≪ T , we can
expand Eq. (21) up to the linear terms in ∆µ/T . Using
this expansion we can rewrite each integrand in the above
expression in terms of W∆t(rk+1, rk; n). Then evaluating
the product over k we obtain Eq. (21). This completes
the prove.

APPENDIX C: CALCULATION OF CONSTANT
G IN EQ. (24)

In this appendix we find the constant G in Eq. (24) for
an arbitrary scattering mechanism. This is accomplished
by expressing G in terms of conductivity σ.

If a small electrochemical potential gradient is applied
in the x-direction, it gives rise to an electric current

J = −Lyσ
∂

∂x

(µ

e

)
, (C1)

where Ly is the width of the sample.
Let us find the expression for the current along x-axis

at x = 0 in terms of the transition probability density
W∆t. It is given by the difference in the number of elec-
trons crossing the line x = 0 from left to right and in the
opposite direction in unit time, namely,

J =
e

∆t

∫ Ly

0

dy1

∫ Ly

0

dy2

∫ 0

−∞

dx1

∫ ∞

0

dx2

×[W∆t(r1, r2; n) − W∆t(r2, r1; n)]. (C2)

In equilibrium, i.e. at ∂µ/∂x = 0, the expression for the
difference of probability densities in the second line of
Eq. (C2) vanishes. Away from equilibrium it can found
by using the “detailed balance” expression (21):

W∆t(r1, r2; n) − W∆t(r2, r1; n) ≃ µ1 − µ2

T
W∆t(r1, r2; n).

Expanding µ1 − µ2 ≃ (x1 − x2)∂µ/∂x, one can see that
the linearized form of Eq. (C2) reproduces Eq. (C1) with
the conductivity given by

σ =
e2

LyT∆t

∫ Ly

0

dy1

∫ Ly

0

dy2

∫ 0

−∞

dx1

∫ ∞

0

dx2

×(x2 − x1)W∆t(r1, r2; n). (C3)

It is important to note that this expression is taken
in the limit ∂µ/∂x = 0, so that W∆t in Eq. (C3) is an
equilibrium quantity. Therefore W∆t depends only on
the distance between r1 and r2, i.e., W∆t(r1, r2; n) =
W∆t(|r1 − r2|; n). Then substituting new variables x =
x2−x1 and u = (x1 +x2)/2 into the integral in Eq. (C3),
and integrating over u, we find

σ =
e2

2LyT∆t

∫ Ly

0

dy1

∫ Ly

0

dy2

∫ ∞

−∞

dx

×x2W∆t(
√

x2 + (y1 − y2)2; n).

Changing the variables to y = y1 − y2 and v = (y1 +
y2)/2, and using the fact that

∫
dv = Ly, we obtain

σ =
e2

4T∆t

∫
dr r2W∆t(|r|; n). (C4)

Finally, comparing Eqs. (24) and (C4) we find G =
4Tσ/e2.

APPENDIX D: STATIONARY SOLUTION OF
EQ. (28) NEAR THE THRESHOLD

In this appendix we discuss the stationary solution
Ps{n} of the Fokker-Planck equation (28) near the
threshold. At bias near Vth function b(n) can be ap-
proximated by a constant b = b(nth). Then the equation
for Ps{n} takes the form,
[
u′(n) +

δ

δn
− 2η∇2n − T

2σ

e2b
∇2 δ

δn

]
Ps{n} = 0. (D1)

Here η = σ/c̃b and 2a/b = 2A/B = −u′(n), c.f. Eq. (13).
It is convenient to present Ps{n} in terms of a func-

tional Fs{n}, such that Ps{n} = exp(−Fs{n}). Then
Eq. (D1) takes the following simple form

−2σT

e2b
∇2y(r) + y(r) = f(r), (D2)

where we introduced y(r) = δFs/δn and f(r) = u′(n) −
2η∇2n.

Solution of this equation is given by

y(r) =

∫
dr′ f(r′)G(r − r′), (D3)

where G is presented in terms of the modified Bessel func-
tion K0 as

G(r) =
1

2πr2
T

K0(r/rT ), rT =

√
2σT

e2b
. (D4)

At low T the characteristic size rT of the Green’s func-
tion G is very small, so that G can be approximated by a
δ-function. Then Eq. (D3) greatly simplifies,

δ

δn
Fs{n} = u′(n(r)) − 2η∇2n(r). (D5)

The solution of this equation reproduces Eq. (30).
The exact criterion for validity of Eq. (D5) is given

by the condition rT ≪ r0, where r0 is the characteristic
size of the function −u′(n) + 2η∇2n, see Eq. (31b). Af-
ter substitution of the parameters of the problem from
Eqs. (A7) and (31b) this criterion takes the form:

T ≪ λ2(1 + λ)

(
gL

gR

)3
E3

F

E
3/2
0

√
e(Vth − V )

. (D6)

To estimate the right-hand side of (D6) we take the pa-
rameters λ ∼ 1, EF ∼ E0, e(Vth−V ) <∼ EF and gL ∼ gR.
Then the criterion (D6) reduces to T ≪ EF . Therefore,
one can neglect the temperature term in Eq. (28) unless
the structure is strongly asymmetrical, so that gL ≪ gR.
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APPENDIX E: PROPERTIES OF THE SADDLE
POINT SOLUTION zs(ρ)

In this appendix we derive several relations between
integrals involving zs(ρ). Our goal is to express the in-
tegrals

∫
(∇zs)

2 dρ and
∫

zs dρ in terms of ζ defined by
Eq. (57).

Integrating Eq. (53) over the infinite plane and using
the fact that zs(ρ) decays rapidly at large ρ, we find

∫
zs dρ =

∫
z2

s dρ. (E1)

To express the integral in Eq. (64) in terms of the con-
stant ζ, we transform it as

∫
(∇zs)

2 dρ = −
∫

zs∇2zs dρ

= −
∫

z2
s dρ +

∫
z3

s dρ, (E2)

where we used Eq. (53) to obtain the second line of (E2).
To express one of the integrals in the second line of

Eq. (E2) in terms of the other, we take advantage of the
azimuthal symmetry of the saddle point solution. Multi-
plying Eq. (55) by ρ2z′s and integrating over ρ, we find

ρ2z′
2
s

2

∣∣∣∣∣

∞

0

+

∫ ∞

0

ρ2 d

dρ

(
z3

s

3
− z2

s

2

)
dρ = 0.

The first term in this equation vanishes, since zs ∝ e−ρ at
ρ → ∞. The second term can be simplified by integration
by parts, resulting in

∫
z3

s dρ =
3

2

∫
z2

s dρ. (E3)

Using Eqs. (E1)–(E3) and (57) we find the following
expressions for the integrals in Eqs. (64) and (F6),

∫
(∇zs)

2 dρ = 2ζ,

∫
zs dρ = 4ζ. (E4)

APPENDIX F: SOLUTIONS OF EQ. (60)

In this appendix we find the eigenvalues of continuous
spectrum of the Schrödinger equation (60). We consider

a round sample of dimensionless radius R =
√

S/πr2
0

with the critical fluctuation situated in the center. Note
that since we are interested in the case of large samples,
the size of the critical fluctuation is small compared to
the sample size, i.e., R ≫ 1.

The potential −2zs(ρ) is azimuthally symmetric, so it
is convenient to solve equation (60) in polar coordinates.

Separating the variables in as φ̃nm(ρ) = Qnm(ρ)Ψm(ϕ),
we can write the equation for the radial part as follows
[
− d2

dρ2
− 1

ρ

d

dρ
+

m2

ρ2
− 2zs(ρ)

]
Qnm(ρ) = q2

nmQnm(ρ),

(F1)

where q2
nm ≡ λ̃nm − 1. This equation is subject to two

boundary conditions: Qnm(ρ) is finite at the origin and
Q′

nm(R) = 0.
Let us first consider an infinite sample. In the absence

of the attractive potential −2zs, the finite at the origin
solutions to Eq. (F1) are the Bessel functions of the first
kind Jm(qρ). Their asymptotic behavior at ρ → ∞ is

Jm(qρ) ≃
√

2

πqρ
cos

[
qρ − π

2

(
m +

1

2

)]
. (F2)

In the presence of the attractive potential the asymptotic
form of the radial part of the eigenfunction modifies as
follows

Qm(ρ) ≃
√

2

πqρ
cos

[
qρ − π

2

(
m +

1

2

)
+ δm(q)

]
. (F3)

Here δm(q) is the scattering phase shift due to the at-
tractive potential.

For our purposes we only need the expression for δm at
large wavevectors q. At q ≫ 1 the phase shifts δm ≪ 1,
and can thus be found in Born approximation,

δm(q) = π

∫ ∞

0

zs(ρ)J2
m(qρ)ρ dρ, (F4)

see also Eq. (14) in Ref. 36. Note that δm is indeed small
at q ≫ 1, because J2

m ∝ 1/q.
In a finite sample the wavevectors qnm are quantized.

Using the asymptotic form (F3) and the boundary con-
dition Q′

nm(R) = 0, we find

qnm =
π

R

(
ñ − δm(qnm)

π

)
, (F5)

where ñ is given by n + 1/4 if m is even, and by n + 3/4
if m is odd, with n being a nonnegative integer. Then
the eigenvalues λ̃nm are given by 1 + q2

nm. We use this

result in Sec. VA1 to calculate
∏

n λ̃nm. This product
is dominated by the factors with large qnm. Therefore in
Eq. (68) we approximate ñ by the radial quantum number
n and the argument of δm(qnm) by πn/R.

In addition, in Sec. VA1 we need an expression for the
sum of the phase shifts (F4) over the azimuthal quantum
numbers m. In the right-hand side of Eq. (F4) only the
Bessel functions Jm(qρ) depend on m. Since the sum of
J2

m(qρ) over m equals unity,37 we find

∞∑

m=−∞

δm = π

∫ ∞

0

zs(ρ)ρ dρ = 2ζ. (F6)

We used Eq. (E4) to express the above integral in terms
of the constant ζ.

This result can also be derived by means of the Friedel
sum rule which states that the sum of the phase shifts in
the left-hand side of Eq. (F6) is given by πN , where N is
the average number of levels in the attractive potential
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U = −2zs(ρ). Since the two-dimensional density of states
ν2 = 1/4π, we find

N =
1

4π

∫
2zs(ρ)dρ. (F7)

Combining this expression with the Friedel sum rule we
reproduce the result (F6).
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